OPTIMAL OUTCOMES FOR STUDIES COMPARING BEST SUPPORTIVE CARE WITH CHEMOTHERAPY

Fausto Roila Medical Oncology Division, Terni, Italy

ENDPOINT OF CLINICAL RESEARCH IN ONCOLOGY

TREATMENT EFFECTS ON CANCER

- Complete and partial response
- Response duration
- Time to progression

TREATMENT EFFECTS ON PATIENTS

- Survival
- Quality of life

IS THE NEW TREATMENT BETTER?

Quality of life	\	=	<u> </u>
Survival			
\	NO	NO	?
=	NO	?	YES
↑	?	YES	YES

PHASE III TRIALS WITH CHEMOTHERAPY

Antineoplastic

therapy

VS

placebo

Antineoplastic

therapy

VS

BSC

WHAT IS THE BEST SUPPORTIVE CARE?

• Even not clearly defined and standardized best supportive therapy means the best control of the cancer symptoms both in a controlled clinical trials and in clinical practice

BEST SUPPORTIVE CARE VERSUS CHEMOTHERAPY

- Non Small Cell Lung Cancer (stage IIIB-IV)
- Advanced gastrointestinal cancer: pancreatic cancer gastric cancer colorectal cancer
- Advanced prostatic carcinoma

PHASE III TRIALS OF CHEMOTHERAPY VS BSC

- Are not double-blind trials

- The patients know the assigned treatment

Non Small Cell Lung Cancer Stage IIIB-IV

Chemotherapy vs BSC in NSCLC

Author	N° pts	Treatment	OR	Median OS(mo)	QoL
Thongprasert S, Lung Cancer 1999	287	IEP or MVP+BSC BSC	40.0%	5.9-8.1* 4.1	↑
ELVIS trial JNCI 1999	161	vinorelbine BSC	19.7%	7.0* 52	↑ (p= ns)
Anderson H, BJC 2000	300	gemcitabine+BSC BSC	19%	No diff	↑
Ranson M, JNCI 2000	157	paclitaxel+BSC BSC	16%	6.8* 4.8	=
Shepherd FA, JCO 2000	103	docetaxel + BSC BSC	7.1%	7.0* 4.6	↑
Roszkowsky K, Lung Cancer 2000	207	docetaxel + BSC BSC	13.1%	6.0* 5.7	trend 1

^{*:} statistically significant difference

Use of analgesic drugs and palliative radiotherapy

(Shepherd FA et al, JCO 2000)

	Docetaxel (%)	Best Supportive Care (%)	Р
Any medication	62	77	.02
Morphine for pain	32	49	.01
Nonmorphine analgesics for pain	39	55	.03
Medications for indications other than pain	30	49	< .01
Radiation	26	37	.09

Use of analgesic drugs and palliative radiotherapy

(Roszkowsky K et al, Lung Cancer 2000)

Parameter	Docetaxel		BSC		P-value
	n	%	n	%	
Total number of patients	137	100.0	70	100.0	
Patients with palliative radiotherapy during the study					
At least one dose	33	24.1	29	41.4	/ P < 0.01
None	104	75.9	41	58.6	
Patients with tumor-related medication during the study					
Opiate analgesic	56	40.9	48	68.6	P < 0.001
Non-opiate analgesic	44	32.1	43	61.4	P < 0.001
Tumor-related medication other than for pain	75	54.7	52	74.3	P < 0.001
Anti-infective medication	79	57.7	29	41.4	P = 0.027

Advanced Gastrointestinal Cancers

Chemotherapy vs BSC

Tumor	N° pts	Treatment	OR	Median OS(mo)	instrument for QoL	QoL
PANCREATIC- BILIAR CA. Ann Oncol 1999	90	FELv or FLv BSC	8%	6.0* 2.5	EORTC- QLQ-C30	^ *
GASTRIC CA. Glimelius Ann Oncol 1994	18	FELv or FLv BSC	33%	~10.0* ~5.0	EORTC- QLQ-C30	^ *
Pyrhonen S BJC 1995	41	FEMTX BSC	29%	12.3* 3.1	no	no data
Glimelius B, Ann Oncol 1997	61	ELF of FLv BSC	nr	8.0 5.0	EORTC- QLQ-C30	^ *
Murad AM, Cancer 1993	40	FAMTX BSC	50%	9.0* 3.0	no	nr

^{*:} statistically significant difference

Chemotherapy vs BSC

COLORECTAL CARCINOMA	N° pts	Treatment	OR	Median OS(mo)	Strument for QoL	QoL
Cunningham D, Lancet 1998	189	irinotecan + BSC BSC "Second line" treatment	nr	↑	EORTC- QLQ-C30	↑
		"Second-line" treatment				

Overall Survival

Advanced Prostatic Carcinoma

Advanced prostatic cancer

Mitoxantrone + Prednisone

161 pts

Prednisone

Tannock IF et al, JCO 1996

Advanced prostatic cancer

 Primary endpoint = PALLIATIVE RESPONSE defined as a 2-point decrease in pain as assessed by a 6-point scale completed by pts (or complete loss of pain if initially the score was 1) without an increase in analgesic medications and maintained for 2 consecutive evaluations at least 3 wks apart.

Chemotherapy vs "BSC"

PROSTATIC CANCER	N° pts	THERAPY	PALLIATIVE RESPONSE	OS (mo)	Instrument for QoL	QoL
Tannock IF JCO 1996	161	Mitoxant+ Prednisone Prednisone	29% 12%	=	 - LASA - PROSQOLI - EORTC-QLQ- C30 - Disease-specific module 	^ *

^{*:} statistically significant difference

PROSPECTIVE RANDOMIZED TRIAL OF DOCETAXEL VERSUS BEST SUPPORTIVE CARE IN PATIENTS WITH NON-SMALL-CELL LUNG CANCER PREVIOUSLY TREATED WITH PLATINUM-BASED CHEMOTHERAPY

Shepherd FA, J Clin Oncol 2000; 18:2095-2103

STUDY DESIGN

-2nd line CT in 204 NSCLC patients previously treated with a platinum based chemotherapy in which patients have been randomized to receive:

- docetaxel 100 mg/m² every 21 days (reduced to 75 mg/m² after interim safety-data monitoring identified a significantly higher toxic death rate)

-or BSC

-Patients receiving docetaxel were premedicated with oral dexamethasone 8 mg bid for 5 days

RESULTS (efficacy)

	D 75	D 100	BSC
Response rate	5.5	6.3	0
Duration (ws)	26.1	23.9	_
Survival (ms)	7.5	5.9	4.6
1-year survival	37	19	19

RESULTS (% Grade 3-4 toxicity)

	D 75	D 100	BSC
Neutropenia	67	86	_
Anemia	5	16	_
Asthenia	18	22	28

5 toxic deaths with D 100 and 1 with D 75

RESULTS (clinical benefit)

- All quality of life parameters favored docetaxel and patients referred significantly less pain and fatigue

- less worsening of PS from baseline with docetaxel

- Less use of morphine for pain (32% vs 49%) and less palliative radiotherapy (26% vs 37%) with docetaxel

Docetaxel as second-line chemotherapy for non-small-cell lung cancer

Roila F et al, J Clin Oncol 2000; 18: 3738 letter

• Enrollment: study carried out in 35 centers enrolling 204 pts in a 4-year period (1-2 pts per year). Were these pts consecutively enrolled? Or was there a selection bias in the enrollment?

Authors: difficulties with accrual due to the BSC arm and the exclusion of pts previously receiving paclitaxel regimen (the most frequently used regimen in the US)

• Sample size and statistical significance levels: two unplanned comparisons of survival were reported, 100 mg/m² vs BST (no difference) and 75 mg/m² vs BSC (> significant survival with CT)

Due to the low number of pts enrolled (55 vs 49) and the shortcomings of the enrollment the conclusion that the "benefits of docetaxel 75 mg/m² outweigh the risk" is not acceptable. Furthermore, many of the reported differences between the two treatments did not reach statistical significance and therefore could be due to chance

• some statistical analyses non clearly reported (i.e., power of log-rank test used for unplanned comparisons)

• Authors: we agree that a sample size of 104 pts would ordinarily be inadequate to determine that docetaxel is superior to BSC; however, the power of the test becomes irrelevant once a significant difference is observed

• Heterogeneity: the BSC arm was not standardized; in particular, the use of corticosteroids in pts submitted to docetaxel can have an important influence on pain and fatigue symptoms. This produces a relevant noise in evaluating clinical benefit and quality of life.

• Authors: it would be absolutely impossible to standardize BSC due to the variability of symptoms that might develop in pts with progressive NSCLC

• Conclusions: due to the shortcomings of the study, its results can be considered, at most, as encouraging for the planning of a trial in which BSC is more standardized

Authors: not possible to repeat a similar study.
 Docetaxel should be considered the gold standard for second-line treatment of NSCLC